Attributes

```
xbe name=edge_delay evaluate=yes limit_tstep=yes save_history=yes allow_ssw=no
# shift input signal by the given delay. The input signal is assumed
# to be x_high or x_low (like clock signals)
#
# the total delay is n_delay*(theta_delay)+theta_delay_1, converted to time
#
Jacobian: variable
input_vars: x
output_vars: y
aux_vars:
iparms:
+ n_delay=1
+ flag_frequency=1
+ flag_period=0
+ flag_zero_delay=0
sparms:
# Note: frequency (or T) is used only to convert theta_delay
# to t_delay. The input signal is not required to be periodic.
rparms:
+ x_low=0
+ x_high=1
+ frequency=0
+ T=0
+ theta_delay=0.0
+ theta_delay_1=0.0
+ t_delay=0
+ x_last=0.0
+ t_low_to_high=0
+ t_high_to_low=0
+ x_cross=0
+ eps12=0
+ eps13=0
stparms:
igparms:
outparms: x y
```

Description

edge_delay.xbe is used for shifting a clock- or PWM-type signal by a delay interval Δ . Its behaviour is controlled by integer parameters flag_frequency, flag_period, n_delay, and real parameters frequency, T, x_low, x_high, theta_delay, theta_delay_1.

The delay interval is computed in terms of T (which is typically a clock period) as

$$\Delta = (n\,\theta + \theta')\,\frac{T}{360}\,,\tag{1}$$

where n, θ , θ' are given by n_delay, theta_delay, theta_delay_1, respectively. The remaining parameters have the following meaning.

frequency: If flag_frequency is 1, then *T* in Eq. 1 is computed as 1/frequency.

T: If flag_period is 1, then T gives T in Eq. 1.

x_low: Low level (in both input and output waveforms).

x_high: High level (in both input and output waveforms).

x and y are made available as output variables. Fig. 1 illustrates the working of this element.

Figure 1: Input x(t) and output y(t) for edge_delay.xbe. The parameter values are flag_frequency = 1, flag_period = 0, frequency = 50, n_delay = 1, theta_delay = 90, theta_delay_1 = 0, x_low = 0, x_high = 1.