Attributes

inputs: m outputs: g1 g2 e_left_nodes: e_right_nodes: e_top_nodes: e_bottom_nodes: b_left_nodes: b_right_nodes: b_top_nodes: b_bottom_nodes: parameters: T_mono: computed delt_min: 0.1u delt_nrml: 1u fc: 1e3 t0_1: computed

Description

s_phase_shift_pwm is used to generate gate signals g1 and g2 where g2 is a phase-shifted version of g1. The parameter m determines the phase shift. By varying m from -1 to 1, the phase of g2 with respect to g1 can be varied from 180° to -180° .

The frequency of the gate signals is given by the parameter fc. The parameters delt_min, delt_nrml are used for controlling the simulator time steps (see documentation for cmpr_1_1).

Note that m is limited internally (within s_phase_shift_pwm) to the range -1 < m < 1. Sample waveforms are shown in the following figures.

Figure 1: Sample waveforms obtained with fc = 1 kHz, m = 1.

Figure 2: Sample waveforms obtained with fc = 1 kHz, m = 0.5.

Figure 3: Sample waveforms obtained with fc = 1 kHz, m = -0.5.

Figure 4: Sample waveforms obtained with fc = 1 kHz, m = -1.